
Application of Clustering Methods for Analysing of TTCN-3 Test Data Quality

Diana Vega
Technical University of Berlin

Franklinstr. 28/29
vegadiana@cs.tu-berlin.de

George Din
Fraunhofer FOKUS

Kaiserin-Augusta-Allee 31, Berlin
george.din@fokus.fraunhofer.de

Stefan Taranu
Fraunhofer FOKUS

Kaiserin-Augusta-Allee 31, Berlin
stefan-liviu.taranu@fokus.fraunhofer.de

Ina Schieferdecker
Fraunhofer FOKUS

Kaiserin-Augusta-Allee 31, Berlin
ina.schieferdecker@fokus.fraunhofer.de

Abstract

The use of the standardised testing notation, Testing and
Test Control Notation (TTCN-3) [5] language has increased
continuously over the last years. Many test suites of large
sizes covering different domains exist. Therefore, it be-
comes important to provide the TTCN-3 community with
methods and tools to evaluate the quality of tests.

This paper presents the idea of evaluating the quality of
the test data stimuli by using a data clustering method and
measuring the coverage related to data clusters. A cluster
contains stimuli which are considered similar for the system
under test (SUT) behaviour; that means that each stimuli
within a cluster should provide similar results from the test
point of view.

1 Introduction

Producing and identifying effective tests is a challeng-
ing task and a very debated subject in the testing re-
search [12, 1, 10, 6]. The answer to the question, ’what
makes a test suite good?’ is relative and involves differ-
ent views and characteristics [17]. An important role for
test quality, if not the most important role, has the test data
used to stimulate the SUT, i.e. stimuli, and observe its reac-
tion. This paper presents the idea of evaluating the quality
of the test data stimuli by using a data clustering method
and measuring the coverage related to data clusters. Clus-
tering is the data classification of similar data into different
groups (clusters). Data clustering is a common method for
domains where data sampling and processing is needed [8].
We apply this idea in order to create clusters for TTCN-3
types. From the testing point of view, a cluster should con-
tain stimuli which are considered similar for the SUT be-

haviour, i.e. produce equivalent results for the test purpose.
There are many options to split a type into clusters. There-
fore, we consider important to create clusters for the most
significant values (e.g. boundaries of integer ranges, dic-
tionaries for charstring types). However, once the default
clusters are created, the user has still the possibility to cre-
ate further clusters.

The clustering method is applied for each type used to
create stimuli during a test. Once the clusters have been
created, the next step is to verify which clusters are actually
covered by the test suite. We determine then the coverage as
the number of covered clusters out of all possible clusters.
For this purpose, the test data stimuli have to be identified
and prepared for evaluation. Due to the high flexibility of
the language, the stimuli templates may not contain con-
crete values but also variables, function calls, parameters,
values which are known at runtime only, etc. Therefore,
we use Constraint Programming (CP) - a software technol-
ogy for effective solving problems - with static analysis of
TTCN-3 test suites targeting a realistic template solving.
We name template constraint an expression whose value
(or domain restrictions) can only be determined by looking
at the execution paths in the analysed test behaviour. This
method leads to a better computation of the data and, thus,
to a better classification into clusters.

The maximal coverage is reached when all clusters are
covered, i.e., at least one stimulus exists for each cluster.
The coverage can be investigated for each particular type
but also globally by computing the average coverage among
all types.

2 Related Work

A framework for analysing different quality aspects of
test specifications is provided in [17]. It proposes a qual-

The Third International Conference on Software Engineering Advances

978-0-7695-3372-8/08 $25.00 © 2008 IEEE

DOI 10.1109/ICSEA.2008.44

237

The Third International Conference on Software Engineering Advances

978-0-7695-3372-8/08 $25.00 © 2008 IEEE

DOI 10.1109/ICSEA.2008.44

237

ity model for test specifications and it is derived from
the ISO/IEC 9126 [7] quality model. Various test met-
rics have been already developed measuring selected as-
pects [14, 3, 16], but they are still in their infancy or regard
test quality aspects rather at programming language level
than at test specific expectations.

Data variance is investigated by inspecting the proximity
of objects. The survey in [8] presents how clustering fa-
cilitates the grouping of a given collection into meaningful
clusters (similar data points). Measurement of the proxim-
ity (similarity) between data points is accomplished through
well defined partition clustering algorithms. Example of
direct utility of this field is statistical theory and machine
learning where the first step is pattern/data representation.

Cluster analysis is an analysis method for finding groups
of clusters in a population of objects. The goal of cluster
analysis is to partition a population into clusters in such a
way that objects with similar attribute values are placed in
the same cluster, while objects with dissimilar values are
placed into different clusters. The similarity or dissimilar-
ity is measured using dissimilarity metrics, as for instance
the Euclidean Distance [13]. Another example is the seman-
tical distance function on pairs of words or terms, entitled
Google distance which has been suggested in [2].

3 TTCN-3 Test Data Selection

A TTCN-3 test suite consists of many testcases struc-
tured into modules. A testcase creates test components and
connects them to the SUT over test ports. The communi-
cation with the SUT takes place through well-defined com-
munication ports and an explicit test system interface (TSI),
which defines the boundaries of the test system. Each test-
case defines also a test behaviour which consists of program
statements such as communication operations and data pro-
cessing operations.

The TTCN-3 template mechanism provides the possibil-
ity to specify and structure test data. A template can de-
scribe concrete values or specify subsets of values of a given
data type. Therefore, templates can be used to create both
test stimuli and matching patterns for the SUT responses.

The first step in test data selection is a static analysis of
TTCN-3 test suites, that is, no runtime values, elements, etc.
are concerned, but the TTCN-3 test specification only. The
target is the determination of the data set which forms the
input space to be evaluated, i.e TTCN-3 stimuli templates.
To accomplish that, we propose a template subset selec-
tion algorithm. To simplify the problem, we assume that
all ports which belong to a TSI are message-based ports
which can transport data to the SUT 1. To easy the inves-
tigation, we also made the assumption that the behaviour of

1This is in fact not a limitation, but a precondition that test data can be
sent to the SUT via ports

each testcase runs on the main test component (MTC) only,
that is, no parallel test components are involved.

3.1 Template Set Selection Algorithm

For every testcase, the TSI is indicated within the sys-
tem clause. We consider the coverage at TSI level, for each
port, and for each type T of data exchanged through the
port. Therefore, it makes sense to select and determine the
number of clusters regarding the SUT stimuli for a specific
type using a specific port. The selection algorithm consists
of the following steps:

1 determine all TSIs in a test suite
2 for each TSI, identify the set of all testcase having as

system that TSI. The set is denoted {TCsTSI}
3 identify all ports and all in/inout data types for each

port
4 for each type T, and its associated port pTSI, initialise

an empty set of templates {templatesT,pTSI}.
5 for each type T, and its associated port pTSI, determine

in {TCsTSI} all map statements having as system port
the name pTSI. Collect all port names found in map
statements, i.e. ports on the main test component; let
us denote the port set {MappedPortspTSI}.

6 for each element p in {MapedPortspTSI}, search
in all test behaviours regarding {TCsTSI} after
p.send(message) statements. Add the message to the
set {templatesT,pTSI}.

The algorithm generates all possible
{templatesT,pTSI} sets, where each set consist of all
messages of the same type sent over the same port of the
same TSI.

3.2 Refinement of the Template Set using
Constraint Programming

The TTCN-3 semantic permits various ways to assign
values to templates or to fields of templates such as: di-
rect values, i.e., integer, charstring values, variables, user-
defined function calls, language specific function calls, test-
case parameters, module parameters, expressions.

The degree of the completeness of a template definition
impacts on the template set selection. A template reference
can be used as stimuli in more than one testcase, but us-
ing different parameters. This results in many occurrences
of the same template in the input space. Hence, to come
up with a template solver, we investigated symbolic execu-
tion [9] technique. This technique assumes that instead of
supplying the normal inputs to a program (e.g. numbers),
one supplies symbols representing arbitrary values within a
specific domain or constrained values.

In white-box testing, the symbolic execution method
uses the control flow graph (CFG) of a program, which is

238238

a graph abstraction of the program, and symbolically exe-
cutes the program by selecting only one execution path from
the CFG. Tools such as the well-known Java PathFinder
(JPF)[11] have successfully adopted this technique to prove
the correctness of a program.

Following this method, we built first the CFG associated
to a testcase behaviour which contains a stimuli-message.
Then a TTCN-3 symbolic template solver built with the
help of CFG and constraint programming methods (CP) tar-
gets the domain reduction for a specific template field. The
solution to the identified constraints upon template fields
along an execution path, helps to individualise the template
references which have many occurrences in the initial tem-
plate set. We propose the following algorithm:

1. for each template from the template set identify the
TTCN-3 behavioural entity (e.g. testcase, function)
where the interested stimuli message, called target
template occurs, i.e. a statement p.send(message).

(a) build the control flow graph (CFG) for that spe-
cific behavioural entity (e.g. testcase, function).

(b) localise the target template (encapsulated in
p.send(message) statements) to a corresponding
node in CFG; this node is called target node.

(c) determine the path conditions for each path that
connects the CFG head with the target node.

i. identify the decisions blocks and derive the
constraints

ii. build a variable symbol table on a top down
manner which stores for each variable the
constrained domain

iii. apply the constraints on the variables direct-
ly/indirectly involved in the structure of the
target template

(d) expand the templates set with variations of the
target template as resulted from the different con-
straints on different paths.

4 Coverage Computation Approach

The method to compute the test data coverage is based
on the concept of test data clustering. The test data clusters
are derived from the SUT specification and the coverage
method computes how many clusters are covered by the test
data created in the test specification. As illustrated in Fig-
ure 1, the SUT model is used to derive the data clusters. In
TTCN-3 test specifications, the SUT can also be modelled
within the test specification by means of ports and types of
messages interchanged between the test system and SUT
over those ports. This allows us to compute the data clus-
ters using the test specification itself. Once the clusters have

been identified, each stimulus, i.e., template, is investigated
and placed in one cluster. The coverage is defined as the
number of covered clusters out of all possible clusters.

Figure 1. Cluster Derivation
According to [4], in clustering theory two main ap-

proaches are used: partitioning and hierarchical. The par-
titioning technique divides the data into k clusters, for a
chosen k. The hierarchical approach is a stepwise pro-
cess for generating clusters. Compared to hierarchical ap-
proach, the partitioning cluster analysis produces better
high-quality clustering but it is computationally also more
expensive. For this reason, we selected the first method.
However, we plan to explore and apply the second method
later on.

The clusters need to be created for each type of TTCN-3
template used as stimuli. For basic types the clusters are
created from the type ranges derived from the SUT model.
The clusters of structured types result as a combination of
the clusters of the fields. However, the initial clusters are
only default clusters, therefore, they can be further extended
and refined.

As long as TTCN-3 supports ’omit’ value for optional
fields in structured types, the ’omit’ is considered as sepa-
rate cluster. This implies that the ’omit’ value has to be a
separate test stimuli in order to cover this cluster as well.

4.1 Clustering of Basic Types

Integer. The integer values used in test stimuli are de-
fined as integer ranges. We distinguish between ranges in-
cluding the ’0’ number and ranges not including the ’0’
number.

For a range [a..b] not including ’0’ the default clusters
are:

[a](a..T](a + T..b− T)[b− T..b)[b]
First of all, the margins of the ranges are considered as

separate clusters as they need to be separate stimuli in the
test system. Next, values from the sub-ranges around the
margins are also important test stimuli. Therefore the (a..T)
and (b− T..b) clusters are created, where ’T’ is a threshold
to configure the size of the cluster. This value can be ar-
bitrary selected. For convenience, we introduced only one
global threshold. However, the thresholds in the two ranges
can be different. The rest of the range constitutes a separate

239239

cluster.
If the ’0’ number is included in the range then additional

clusters are generated around this number as follows:
[a](a..T](a+T..0−T)(0−T..0)[0](0..0+T)[0+T..b)[b]
The number ’0’ is considered a separate cluster since this

value needs to be a separate stimuli. Also the values around
’0’ up to a threshold T are considered important, therefore,
two additional clusters a created for these ranges.

Additionally, the cluster number can be extended by di-
viding the ranges into further subranges. This increase of
the number of clusters will impact the coverage for that type
by improving the level of detail.

The clusters of float types are created in a similar manner
as for integer type.

Charstring. Charstring types are used in test specifica-
tion to define meaningful words such as names, countries,
cars, etc. Therefore we consider the dictionary of the possi-
ble meaningful words as being a separate cluster. However,
this cluster includes all valid values. In order to cover also
invalid values, further clusters need to be defined. There-
fore, we consider three further clusters based on size: clus-
ter of strings with minimal length, cluster of strings with
maximal length and, finally, cluster of strings with length
between minim and maxim.

The clusters of other string based types, e.g, bitstring,
octetstring, hexstring, are created in a similar manner as for
charstring type.

Boolean. The boolean types are separated into two clus-
ters true and false as these values need to be tested by sepa-
rate test stimuli.

4.2 Clustering of Structured Types
The clusters of structured types are created as combina-

tion of clusters of fields so that each cluster of a given field
is combined with any cluster of another field. We provide
as example the clustering of record type.

For the following record type:
type record r:= {nameType name, ageType age}, where,

type charstring nameType length 20;
type integer ageType (18..67);

there are 20 clusters possible: 4 clusters given
by the charstring type multiplied by 5 clusters
given by the integer type. We provide only the
combinations between the dictionary cluster of
name charstring and the clusters of age integer:
{dictionary cluster,{18}}, {dictionary cluster,(18..20]},
{dictionary cluster,(20..65)}, {dictionary cluster,[65..67)}
and {dictionary cluster,{67}}.

4.3 Cluster Coverage

The templates used as stimuli for the SUT are sorted out
into clusters. If a template is a constraint one, then it may

cover more than one cluster at the same time. For instance
t := [0..100] can be in the cluster of ’0’, in (0..T) but also in
(T..100).

The coverage is computed separately for each type as the
number of covered clusters out of the total number of clus-
ters. However, a global coverage number can be computed
as the average of coverages of all types.

5 An Example

In this section, we show how to apply the introduced
concepts to a TTCN-3 example. The SUT is a web service
with an interface which supports queries in a hotel database,
by specifying the city, availability on a start date during a
number of days, the range for the price given as minimum
and maximum price, the number of stars for the hotel and
whether it offers internet access.

Data Types. The test suite defines the types presented in
Listing 1. We defined two main TTCN-3 types: ReqType,
for messages to be sent to SUT and RespType for mes-
sages to be received from the SUT. In a ReqType, a city is
represented as a charstring, the startDate as a record
structure having two fields - day as an integer from 1
to 31 and month as an integer from 1 to 12. The next
field is an optional field, priceRange of record type hav-
ing also two fields: minimum and maximum price as pos-
itive floats (in TTCN-3 this constraint is expressed as
a range (0.0..infinity)). The last two fields of the
ReqType are: stars as an integer between 0 and 5 and
the optional field hasInternet of type boolean.

Listing 1. TTCN-3 Types Definition
1 / / module p a r a m e t e r s
2 modulepar c h a r s t r i n g mpCity := ” B e r l i n ” ;
3 modulepar S t a r s T y p e mpSta rs := 2 ;
4 modulepar boolean m p H a s I n t e r n e t := t rue ;
5 / / da ta t y p e s
6 type i n t e g e r S t a r s T y p e (0 . . 5) ;
7 type i n t e g e r P o s i t i v e I n t e g e r T y p e (0 . . i n f i n i t y) ;
8 type record Pr iceRangeType {
9 f l o a t min (0 . 0 . . i n f i n i t y) ,

10 f l o a t max (0 . 0 . . i n f i n i t y)
11 }
12 type record DateType {
13 i n t e g e r day (1 . . 3 1) ,
14 i n t e g e r month (1 . . 1 2)
15 }
16 type f l o a t P r i c e T y p e ;
17 type record ReqType {
18 c h a r s t r i n g c i t y , DateType s t a r t D a t e ,
19 P o s i t i v e I n t e g e r T y p e days ,
20 Pr iceRangeType pr i ceRange ,
21 S t a r s T y p e s t a r s , boolean h a s I n t e r n e t
22 }
23 type record Hote lType {
24 c h a r s t r i n g c i t y , P r i c e T y p e p r i c e ,
25 S t a r s T y p e s t a r s , boolean h a s I n t e r n e t
26 }

240240

27 type record of Hote lType RespType ;

The response from the SUT, RespType represents a list
of the available hotels which satisfy the query. Each hotel
is described using the record HotelType containing the
city, the price, stars and hasInternet fields.

Test Configuration. Listing 2 describes the port and
component types that are used in the test configuration. We
defined a main test component type, MTCType, and a sys-
tem component type, TSIType. The communication is re-
alised using message-based ports of type MTCPortType
on the test side, and TSIPortType on the system side.
Since our coverage computation method regards the TSI
coverage, the analysed TTCN-3 type is ReqType because
it is the only stimulus type and there is only one port pTSI
of the TSI component.

Listing 2. TTCN-3 Test Configuration
1 type port MTCPortType message {
2 out ReqType ;
3 in RespType ;
4 }
5 type port TSIPor tType message {
6 out RespType ;
7 in ReqType ;
8 }
9 type component TSIType{

10 port TSIPor tType pTSI ;
11 t imer t := 1 0 . 0 ;
12 }
13 type component MTCType{
14 port MTCPortType pMTC;
15 t imer t := 1 0 . 0 ;
16 }

Templates. For stimulating the SUT, three templates
of type ReqType have been defined (see Listing 3). In
TTCN-3, the sending templates have to be always com-
pletely specified, i.e. no usage of patterns or wildcards
within their definition. As oracles used in establishing the
the test verdicts, two templates of type RespType com-
plete the template list. While the resFoundTmpl template
embeds a non empty list of hotels that SUT may return as
response, the resNotFoundTmpl defines a response encod-
ing the lack of hotels satisfying the query.

Listing 3. TTCN-3 Templates
1 / / R e q u e s t T e m p l a t e s
2 t empla te ReqType r e q 3 S t a r s T m p l := {
3 c i t y := mpCity ,
4 s t a r t D a t e := {day : = 1 , month := 6} ,
5 days := 4 ,
6 p r i c e R a n g e := {min : = 0 . 0 , max : = 1 0 0 . 0} ,
7 s t a r s := 3 , h a s I n t e r n e t := t rue
8 }
9 t empla te ReqType r e q 5 S t a r s T m p l :={

10 c i t y := mpCity ,
11 s t a r t D a t e := {day : = 1 , month : =6} ,
12 days := 4 ,

13 p r i c e R a n g e := {min : = 0 . 0 , max : = 1 0 0 . 0} ,
14 s t a r s := 5 , h a s I n t e r n e t := t ru e
15 }
16 t empla te ReqType req6DaysTmpl := {
17 c i t y := mpCity ,
18 s t a r t D a t e := {day := 1 , month : =2} ,
19 days := 6 ,
20 p r i c e R a n g e := {min : = 0 . 0 , max : = 5 0 . 0} ,
21 s t a r s := 5 , h a s I n t e r n e t := t rue
22 }
23 / / Response T e m p l a t e s
24 t empla te RespType
25 resFoundTmpl := ? l e n g t h (1 . . 1 0 0 0) ;
26 t empla te RespType
27 resNotFoundTmpl := {}
28 }

Testcases. The test suite defines three testcases. The
first testcase (Listing 4) tests if the SUT finds a hotel with
3 stars cheaper than 100 Euro. As a preamble, the SUT
database contains at least one hotel with 3 stars and be-
low than 100 Euro. The testcase sends the request template
req3StarsTmpl and expects as result a non empty list
of hotels. After sending the search request a timer is started
in order to validate that the SUT responds in an acceptable
amount of time.

Listing 4. Testcase 1
1 t e s t c a s e t 1 () runs on MTCType system TSIType {
2 map (s e l f : pMTC, system : pTSI) ;
3 p . send (r e q 3 S t a r s T m p l) ;
4 t . s t a r t ;
5 a l t {
6 [] p . r e c e i v e (resNotFoundTmpl)
7 { s e t v e r d i c t (f a i l) ; }
8 [] p . r e c e i v e (resFoundTmpl)
9 { s e t v e r d i c t (pass) ; }

10 [] t . t imeout { s e t v e r d i c t (inconc) ; }
11 }
12 }

The second testcase (Listing 5) tests that the SUT finds
a hotel cheaper than 100 Euro with an arbitrary number
of stars. The test behaviour starts with the sending of
req5StarsTmpl request which means that we search
first for a hotel of five stars with a maximal price of 100
Euro. If no hotel is found, the test decreases the number of
stars and tries again. This can repeat until the number of
stars is equal to 0 when the test stops with verdict fail.
If in the meantime a hotel is found, then the test stops with
verdict pass. The duration of each search operation is val-
idated by a timer.

Listing 5. Testcase 2
1 t e s t c a s e t 2 () runs on MTCType system TSIType {
2 map (s e l f :pMTC, system : pTSI) ;
3 var ReqType vReqA := r e q 5 S t a r s T m p l ;
4 p . send (r e q 5 S t a r s T m p l) ;
5 t . s t a r t ;
6 a l t {

241241

7 [] p . r e c e i v e (resFoundTmpl)
8 { s e t v e r d i c t (pass) ; }
9 [] p . r e c e i v e (resNotFoundTmpl) {

10 t . s top ;
11 i f (vReqA . s t a r s >= 1) {
12 vReqA . s t a r s := vReqA . s t a r s −1;
13 p . send (vReqA) ;
14 t . s t a r t ;
15 r ep ea t ;
16 } e l s e { s e t v e r d i c t (f a i l) ; }
17 }
18 [] t . t imeout { s e t v e r d i c t (inconc) ; }
19 }
20 }

The third testcase (Listing 6) tests that the SUT can find a
hotel with a price below 50 Euro for 6 nights between 1.02-
31.03 in Berlin. As a preamble, we assume that the SUT
database contains a hotel available from 5.02 for 6 nights
for 45 Euro. The test behaviour starts with the sending of
req6DaysTmpl request which means that we search first
for a hotel with a maximal price of 50 Euro available for 6
days, starting from 1.02. If no such hotel is found, the tests
increases the starting date so that the upper limit of time in-
terval as well as the availability for 6 nights are satisfied. In
the test logic, this is expressed as a condition in the body of
the second alt alternative:
if(vReqB.startDate.day < 25 and

vReqB.startDate.month <= 3
If in the meantime a hotel is found, then the tests stops

with verdict pass. In the case when the requested start
date reached the upper limit of a convenient time, the test
decreases the number of stars and tries again. This can re-
peat until the number of stars is equal to 0 when the test
stops with verdict fail. If in the meantime a hotel is found
then the tests stops with verdict pass. The duration of each
search operation is validated by a timer.

Listing 6. Testcase 3
1 t e s t c a s e t 3 () runs on MTCType system TSIType {
2 map (s e l f : p , system : p) ;
3 var ReqType vReqB := r e q 5 S t a r s T m p l ;
4 var RespType vResponse ;
5 p . send (req6DaysTmpl) ;
6 t . s t a r t ;
7
8 a l t {
9 [] p . r e c e i v e (resFoundTmpl)

10 { s e t v e r d i c t (pass) ; }
11 [] p . r e c e i v e (resNotFoundTmpl) {
12 t . s t op ;
13 i f (vReqB . s t a r t D a t e . day < 25 and
14 vReqB . s t a r t D a t e . month <= 3)
15 { i n c r e m e n t (vReqB . s t a r t D a t e) ;
16 } e l s e {
17 i f (vReqB . s t a r s >= 1) {
18 vReqB . s t a r s := vReqB . s t a r s −1;
19 vReqB . s t a r t D a t e := {1 , 2} ;
20 p . send (vReqB) ;
21 t . s t a r t ;
22 r ep e a t ;

23 } e l s e { s e t v e r d i c t (f a i l) ; }
24 }
25 }
26 [] t . t imeout
27 { s e t v e r d i c t (inconc) ; }
28 } / / end a l t
29 }

This test suite contains only one template set since the
TSI has only one port type which accepts requests. The
request are of the same message type. The template set con-
sists of the templates that appear in send statements within
the three test behaviours:

Set={req2StarsTmpl, req5StarsTmpl, req6DaysTmpl,
vReqA, vReqB}.

The first three templates are defined such that all fields
contain concrete values except the field city which is as-
signed the module parameter mpCity. This field has to be
resolved by the template solver. The forth and fith messages
in the set are variables which are defined locally in the sec-
ond and in the third testcase. The variable vReqB appears
in the send statement (line 20, Listing 6). The content of the
variable is changed in line 3 (it is initialised with the tem-
plate req6DaysTmpl), line 18 (the field stars is decreased)
and line 19 (the field startDate is reset). Additionally, it also
appears in the decision statement on the lines 13-14 where
the startDate checked and on the line 17 where the number
of stars is compared with value 1. All these constraints need
to be solved.

For each testcase a CFG is built. We note that only
one path exists from the starting point in the graph to the
send statement. This means that no variation of the ini-
tial template set occurs as long as only one path to the
send statement exists. Next, the path conditions are iden-
tified and the constraints on the templates are computed.
For instance, the variable vReqB has associated the explicit
constraint vReqB.startDate = {1, 2}. Additionally, if we
consider the repetition of the testcase behaviour (possible
due to the repeat statement) the number of stars can be
decreased. Another constraint characterising the variable
vReqB is vReqB.stars == 4. This is an implicit contraint
which is computed by decreasing the initial value of the
field stars. The initial value of the field stars is inherited
from the template req5StarsTmpl (line 3, Listing 6).

The next step regards the clustering computation. The
required number of clusters to be covered is determined
starting with the type ReqType definition. It is a record
based type, therefore, the number of clusters is deduced as
the product of number of clusters associated to each leaf
in the tree structure of the type. The ReqType contains 8
leaves, hence the product is of maximum 8 numbers. For
example, the leaf-type day, described as integer day
(1..31), has five clusters: {1}(1..2](2..11)[11..12){12}.
The threshold of the boundaries has been taken as 1.

Figure 2 shows the leaf-clusters for the type ReqType.

242242

Figure 2. Coverage of ReqType Clusters

They have been derived from the basic type defini-
tions, e.g. type integer StarsType (0..5). Addition-
ally, the figure shows that 7 leaf-clusters are covered
by req3StarsTmpl template. This means that only
one cluster of the ReqType clusters is covered by the
req3StarsTmpl template.

6 Prototype Implementation

To carry out automatically the coverage computation of a
given TTCN-3 test suite, we built a framework based on the
TTworkbench [15] product, an Eclipse based IDE that of-
fers an environment for specifying and executing TTCN-3
tests. We present the main features of our framework.

Coverage Computation. The main trigger action
“Compute Coverage” applied to a module in a TTCN-3
project, has as a first result the appearance of a new view
“TTCN-3 Data Variance View”(Figure 3). It displays in a
tree format the identified TSIs and their associated ports and
types. Each node is accompanied by a number representing
the template set size. The number has been obtained by ap-
plying the algorithm for initial template set selection and the
refinement algorithm by using constraints programming.

Leaves selection. Given a complex TTCN-3 structured
type, one may not be interested in all the fields in a clus-
tering process of a template set. Instead, it is preferred to
identify clusters considering relevant leaves only. We cap-
tured this feature in our framework as well. Figure 4 shows

Figure 3. TTCN-3 Data Variance View

what the wizard displays in the case of a record type. If a
leaf is not of interest, the linked check-box has to be simply
unchecked. By default all of them are checked.

Figure 4. TTCN-3 Type Tree
Cluster visualisation. If one field is retained, then, ac-

cording to its basic type definition, e.g. boolean, integer,
charstring, a set of automatically derived clusters is gener-
ated and displayed in the right panel of the wizard. Figure 5
and Figure 6 show which clusters have been generated for
the fields of type boolean and integer, as they have been
defined in the Section 5.

Figure 5. Automatically generated clusters
for an integer-based type

Link to dictionary. For charstring types, a link to a user-
defined dictionary is supported. All charstring templates
found in the dictionary belong to that cluster.

New cluster creation. For basic types additional clus-
ters can be created by using “Add Cluster” button or re-
moved by using “Remove Cluster” button. The user has
then to specify them concretely, e.g. for numeric type to
introduce the limits of the range. Based on the specified
leaf-clusters, the clusters for the whole structured type are

243243

Figure 6. Automatically generated clusters
for a boolean type

then computed (at “Finish” action in the wizard).
Coverage visualisation. In the end, the tools counts the

coverage of the template set over the established clusters.
The Port-Type Coverage is computed and displayed.

CFG visualisation. Additionally, the implementation
supports also a graphical representation of the CFG’s log-
ical structure. While GUIs help more for debugging pur-
poses, e.g. to identify in a visual manner the paths among
the graph, the logical structure of the CFG brings more ad-
vantages along the template set computation process.

7 Conclusions

In this paper we investigated the use of a clustering
method for TTCN-3 stimuli templates for measuring the
coverage of test data. Throughout an example we shown
how the proposed algorithms can be applied. They regard
1) the collection of the test data input space used to stimu-
late the SUT and using the TTCN-3 specification only and
2) how the identified templates cover a set of clusters de-
rived from the underlying TTCN-3 stimuli types. The con-
cepts have been integrated in TTworkbench [15] in order to
automate the static analysis process. We also intent to apply
them for larger systems.

As a next step, we plan to improve the clustering method
by adding priorities for clusters and improving the coverage
formula. However, the main target remains the test specifi-
cation optimisation by automatically generating of the un-
covered test data clusters.

References

[1] R. T. Alexander, J. Offutt, and J. M. Bieman. Fault Detection
Capabilities of Coupling-based OO Testing. In ISSRE ’02:
Proceedings of the 13th International Symposium on Soft-
ware Reliability Engineering (ISSRE’02), page 207, Wash-
ington, DC, USA, 2002. IEEE Computer Society. ISSN 0-
8186-1763-3. IEEE Computer Society.

[2] R. L. Cilibrasi and P. M. B. Vitanyi. The Google Similarity
Distance. IEEE Trans. on Knowl. and Data Eng. IEEE Edu-

cational Activities Department, 19(3):370–383, 2007. ISSN
1041-4347.

[3] D. Vega and I. Schieferdecker. Towards Quality of TTCN-
3 Tests. In Proceedings of SAM’06 – Fifth Workshop on
System Analysis and Modelling (formerly SDL and MSC
Workshop), May 31st-June 2nd 2006, University of Kaiser-
slautern, Kaiserslautern, Germany, 2006.

[4] W. Dickinson, D. Leon, and A. Podgurski. Finding failures
by cluster analysis of execution profiles. In ICSE ’01: Pro-
ceedings of the 23rd International Conference on Software
Engineering, pages 339–348, Washington, DC, USA, 2001.
IEEE Computer Society.

[5] European Telecommunications Standards Institute (ETSI).
European Standard (ES) 201 873-1 V3.2.1 (2007-02): The
Testing and Test Control Notation version 3; Part 1: TTCN-
3 Core Language, 2007. Sophia-Antipolis, France.

[6] M. Grindal, B. Lindstrom, J. Offutt, and S. F. Andler. An
Evaluation of Combination Testing Strategies. Kluwer’s
Empirical Software Engineering, 11(4):583–611, December
2006.

[7] ISO/IEC. ISO/IEC Standard No. 9126: Software engineer-
ing – Product quality; Parts 1–4. International Organiza-
tion for Standardization (ISO) / International Electrotechni-
cal Commission (IEC), Geneva, Switzerland, 2001-2004.

[8] A. K. Jain, M. N. Murty, and P. J. Flynn. Data Clustering: A
Review. ACM Computing Surveys, Vol. 31, No. 3:pp. 264–
323, 1999.

[9] J. C. King. Symbolic execution and program testing. Com-
mun. ACM, 19(7):385–394, 1976.

[10] B. Korel and P. J. Schroeder. Maintaining the Quality
of Black-Box Testing. http://www.stsc.hill.af.
mil/crosstalk/2001/05/korel.html, May 2001.

[11] NASA. Java PathFinder (JPF). http:
//javapathfinder.sourceforge.net/.

[12] P. Netisopakul, L. White, J. Morris, and D. Hoffman. Data
Coverage Testing of Programs for Container Classes. In
ISSRE ’02: Proceedings of the 13th International Sympo-
sium on Software Reliability Engineering (ISSRE’02), page
183, Washington, DC, USA, 2002. IEEE Computer Society.
IEEE Computer Society. ISSN 0-8186-1763-3.

[13] NIST. Euclidean Distance. http://www.nist.gov/
dads/HTML/euclidndstnc.html, 2004.

[14] H. M. Sneed. Measuring the Effectiveness of Software Test-
ing. In S. Beydeda, V. Gruhn, J. Mayer, R. Reussner, and
F. Schweiggert, editors, Proceedings of SOQUA 2004 and
TECOS 2004, volume 58 of Lecture Notes in Informatics
(LNI). Gesellschaft für Informatik, 2004.

[15] T. Technologies. TTworkbench: an Eclipse based TTCN-3
IDE. www.testingtech.de.

[16] B. Zeiß, H. Neukirchen, J. Grabowski, D. Evans, and
P. Baker. Refactoring and Metrics for TTCN-3 Test Suites.
In R. Gotzhein and R. Reed, editors, System Analysis and
Modeling: Language Profiles, volume 4320 of Lecture
Notes in Computer Science. Springer, 2006.

[17] B. Zeiß, D. Vega, I.Schieferdecker, H. Neukirchen, and
J. Grabowski. Applying the ISO 9126 Quality Model to
Test Specifications Exemplified for TTCN-3 Test Specifi-
cations. In Software Engineering 2007 (SE 2007). Lecture
Notes in Informatics (LNI). Copyright Gesellschaft für In-
formatik. Köllen Verlag, Bonn, March 2007.

244244

